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Abstract
We present a method for evaluating the welfare of a decision maker,

based on observed choice data. Unlike the standard economic theory
of revealed preference, our method can be used whether or not the ob-
served choices are rational. Paralleling the standard theory we present
a model for choice such that the observations arise "as if" they were
the result of a speci�c decision making process. However, in place of
the usual preference relation whose maximization induces the obser-
vations, we explain choice as arising from a compromise among a set
of simultaneously-held, con�icting preference relations. As in revealed
preference theory, these simultaneously held preferences are inferred
from the choice data and we use them as the basis to discuss the de-
cision maker�s welfare. In general our method does not yield a unique
set of explanatory preferences and therefore we characterize all the
explanatory sets of preferences. We use this set to compute bounds
on welfare changes. We show that some standard results of ratio-
nal choice theory can be extended to irrational decision makers. The
theory can be used to explore a number of context-dependent choice
patterns found in psychological experiments.
JEL Classi�cation: D01, D11, D60
Keywords: welfare economics, behavioral economics, psychology and
economics, voting
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1 Introduction

The use of observed choice behavior to make inferences about welfare is
one of the basic methods of economics. This classical "revealed preference"
method is based on the assumption that choice is rational. Our objective is to
extend this method to choice functions that are not rational, while following
its fundamental logic and objectives as closely as possible.
The standard economic procedure consists of three steps. First there is

given a set of choice problems, each of which is a subset of the set of all pos-
sible alternatives, and an observed choice made by a decision maker for each
problem. These problems and observations constitute the data. The data
may or may not be complete, as some possible choice problems may not be
included. It is assumed that the data contain no contradictions of rationality
�no switches between observed choices when both remain available, and no
possibility for indirectly inferring that choice is self-contradictory, such as the
observation of cycles. The second step in the revealed preference methodol-
ogy is where the key theorem lies. Provided that the set of choice problems
is "rich enough", the theory tells us that a preference relation can be con-
structed with the property that the decision maker is behaving "as if" he or
she were optimizing it. When the data are not su¢ cient to de�ne a unique
consistent preference relation, there is still a set of preferences relations that
can explain them.1 In all cases, revealed preference theory imagines that
the data is generated as if some preference relation were being optimized.
The third step uses this preference relation both to predict behavior "out of
sample" and to measure welfare.2 For choice problems outside the original
set one can calculate the choice that would be made and one can evaluate
whether or not this problem represents an improvement over any other choice
problem. If the preference relation is given a cardinal representation, this nu-
merical function can be used as a quantitative welfare measure and for the
purpose of computing interpersonal compensations.
The assumption of rationality is, however, not valid for many if not most

data sets that have been encountered. Tests of rationality on ordinary de-

1Afriat�s procedure �nds one of them (Afriat (1967)). Mas-Colell (1978) gives an ap-
proximation result: The more data the smaller the set of preferences that remain consistent
with them.

2If there are multiple preference relations consistent with the data one should make
predictions based on each of them, and measure welfare using each of them. This procedure
is not followed in practice, however.
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mand data fail not because of large error terms but because the hypothesis
is demonstrably false.3 Choice data in psychological experiments or in �eld-
based observations also contain internal inconsistencies and contradictions.
It is frequently the case that choice varies systematically with the context
in which it is made, refuting any internal consistency axiom that might be
applied.4 Revealed preference theory cannot be used as a basis for welfare
analysis because rationality cannot reasonably be assumed. There simply is
no single preference relation that generates the data, and thus there is no
preference relation that can serve as a basis for welfare measurement.5

In this paper we retain the objective of constructing a model for the
decision maker�s observed choice. We seek a model that works whether or
not these choice contain contradictions to rationality. Our strategy is to look
for a set of preference relations and a method for aggregating them that
work in the same "as if" sense that is employed in the standard theory. Our
interpretation of this set of preference relations is that they represent multiple
con�icting motivations that in�uence the decision maker�s choice. Thus we
model decision makers who are "con�icted" in that they simultaneously hold
multiple preferences over the alternatives. We want the data to tell us what
con�icts the decision maker might be experiencing; and we respect all these
con�icting preferences when evaluating welfare. It is in this sense that we
retain the central principle of choice-based welfare economics that has been
the hallmark of microeconomics.
Our central de�nition is that of an "explanation": A set of preferences and

an aggregation method such that this method, applied to these preferences,
reproduces the observed choice at every datum.
Aggregating con�icting preferences is the domain of social choice theory,

the most important result of which is Arrow�s Theorem. This theorem tells
us that any non-trivial aggregation of preferences must display inconsisten-
cies. Democracy and collective rationality are incompatible. This is usually

3See, for example, Deaton-Muellbauer (1980). Rationality in demand is tested via the
implication that under rational choice the Slutzsky substitution terms are symmetric.

4Rubinstein-Salant (2007) describe a theory of "choice with frames" which can explain
some forms of inconsistency of this type. This approach is related to that in our paper
in that they seek a more general theory that can incorporate irrationality and derive the
nature of the irrationality from the data. On the other hand, in their theory there is one
complete ordering that describes any particular choice datum, whereas in our theory the
choice will turn out to be a compromise among the relevant orderings.

5The need to extend welfare methods in economics to account for quasirational behavior
is discussed in Berheim-Rangel (2005) and Gul-Pessendorfer (2005).
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taken as a negative, disappointing, result. For our theory, however, this re-
sult is a source of strength. Because we explain irrationality as a necessary
consequence of compromise among con�icting objectives, we seek a type of
converse to social choice theory: We ask what forms of con�ict and compro-
mise can play the same "as if" role in an explanation of an irrational choice
pattern that a single preference relation plays for rational data in revealed
preference theory?
Our results are as follows:
First we show that there are generally many explanations for any �nite

data set, and that they form a convex subset in the relevant space. When
evaluating welfare using our method, we obtain a range of welfare measures
due to the multiplicity of the explanations.6 The geometric structure of the
set of all explanations makes it feasible to compute bounds on welfare.
Second we show that any choice function, no matter how irrational, can

be explained by our method. One may construe this as a negative result
in that the theory is therefore not testable. We do not, however, view it in
this light. Although there are no logically-imposed limits on the extent of
the irrationality that can be encompassed by this theory, highly irrational
choice functions may require explanations by very strange sets of simultane-
ously held preferences. If it were possible to rule out those combinations of
preferences either by assumption or on the basis of other evidence, one could
provide testable restrictions that even irrational choice must satisfy.
Third, we show that we show that although the decision maker may

be irrational in some respects, it is possible to preserve the conclusions of
rational choice theory provided the choice data satis�es a limited consistency
property. Speci�cally, suppose that a change in the set of opportunities
causes a change in outcome from y to x and that y is never chosen at any
situation where both are available. Then, even though the choice function
may be highly irrational in other respects, the consistency of choice as it
pertains to x and y guarantees that there exist explanations that give all
the weight possible to preferences in which x is indeed preferred to y. Thus
the bene�cial nature of the change in the available set can be insulated from
observed irrationalities that are not relevant to the change at hand.
Fourth, we explore a converse to this result. If the choice data indicates a

"preference reversal" between two alternatives x and y, we show that a typical

6As mentioned above, revealed preference theory would display the same sort of mul-
tiplicity on �nite data sets.
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explanation of this behavior must entail preferences that are in con�ict with
respect to the ranking of x and y. Thus, ordinal welfare inferences associated
to changes in the choice from x to y will not be possible.
Fifth we go beyond the above results which rely on only choice-based

information. When some cardinal, non-choice based information is available,
we can derive more detailed welfare conclusions. The idea is, again, to parallel
rationality-based theory, which constructs cardinal measures of welfare based
on assumptions beyond the rationality of the choices observed.7 We show
that the most optimistic and most pessimistic bounds on welfare are always
realized within a special highly structured family of explanations that we
characterize. Because of the complexity of the general set of explanations for
choice functions, this result drastically simpli�es the calculation of the best
and worst case scenarios for welfare change. As an application of this theory
we show what it implies in the case of three alternatives �a case that has
been thoroughly documented in psychological experiments.
The accumulation of laboratory and �eld-based evidence of irrationality

over the past twenty years has led other authors to explain choice either
by sequential procedures involving multiple objectives, or as the outcome of
a game in which these con�icting objectives play strategically against each
other. Papers in the non-strategic, sequential category posit additional infor-
mation about the alternatives in order to structure the procedure. For exam-
ple, the alternatives may be described by a list of attributes which could be
considered in a �xed order to eliminate or reorder the alternatives. Observed
choice is explained "as if" this process were followed by the decision maker.
From a welfare point of view, however, it is not clear which of the attributes
is most salient �or, if preferences over attributes are to be combined, how
should they be weighted. Classic studies in this mode are Tversky (1972),
Sha�r (1993), and Sha�r-Simonson-Tversky (1993). More recent theoreti-
cal papers along the same lines are Ahn-Ergin (2007) and Manzini-Mariotti

7These assumptions are of several types. One uses studies of brain function, other
physiometric measures, or self-reported measures of satisfaction as the basis for the car-
dinalization. Another uses further data on choices among lotteries, and then, under the
assumption that these choices ful�ll an independence condition, produces a cardinal utility
from the observed risk preferences. Finally, if the choices are over commodity bundles and
one of the commodities, typically money, is assumed to enter preferences in a quasi-linear
form, then this commodity can be used to perform the scaling �yielding the "money met-
ric" utility scale. All of these methods thus rely on additional axioms and assumptions to
produce a cardinalization.
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(2007).
Models of irrational choice in the game theoretic category recognize the

existence of multiple con�icting preferences and impose strategic structure
on the problem within which these preferences interact. These studies are at-
tractive because many people do consciously question their own motivations,
engage in introspection, and sometimes consciously act so as to suppress mo-
tivations that they deem harmful to their own true interests. The di¤erence
between these models and our is that they take the nature of the multiple
selves to be exogenous, using a �xed structure of these selves to generate
the irrational observations. We, on the other hand, ask the data to gen-
erate the multiple explanatory preferences for us. When the nature of the
decision problem has enough structure that one can identify classical moti-
vations, such as patience and impulsiveness, the strategy followed by these
papers can pay handsome dividends. Our structure is perhaps more appro-
priate in general context-dependent situations where the detailed nature of
the alternatives is unknown to the analyst and a priori assumptions about
which preference plays which strategic role in the game may not be appropri-
ate. Important papers in this strategic mold include Strotz (1956), Schelling
(1984), Bernheim-Rangel (2005), Gul-Pessendorfer (2001), and Fudenberg-
Levine (2006). In many of these papers the pattern of choice that is generated
by game theoretic interactions among the preferences displays enough con-
sistency to be "explained" as the maximization of a composite, aggregated
preference. These papers do not address the question of how to measure
welfare. It would seem that one either would have to accept the aggregated
preference as the appropriate welfare measure, or as in the case of the se-
quential procedures, welfare analysis would depend upon making one of the
underlying preferences more salient than the others.8

Our paper is, to our knowledge, the �rst to take a non-strategic approach
to the problem of aggregating con�icting motivations. We treat both the
alternatives and the motivations symmetrically, imposing no structure on
the characteristics of the alternatives. We take this symmetric approach in
order to allow the observed choice behavior to be the sole determinant of the
welfare analysis.
The paper is organized as follows: The basic set up, notation and concepts

8Sometimes these papers adopt a speci�c choice for the aggregation of con�icting prefer-
ences, such as Laibson, Repetto and Tobacman (1998) which gives priority to the long-run
self rather than any of the more impatient selves. See also O�Donahue and Rabin (1999).
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are given in section 2. Section 3 is devoted to a three-alternative example,
typical of psychological evidence on the presence of context e¤ects, involving
choice among delayed payo¤s. Section 4 gives an analysis of the general three
alternative case. In Section 5 we deal with the general case, showing that the
results for three alternatives generalize without much change. Section 6 is
devoted to the question of how a limited, weak form of rationality concerning
the comparison of two particular alternatives, which we call pairwise coher-
ence, allows some fundamental welfare conclusions to survive in the presence
of considerable irrationality of the choice function more generally. Through
Section 6 we are making only ordinal comparisons. In section 7 we allow
for each explanatory preference to be given a cardinal representation, and
we adopt a utilitarian criterion when aggregating multiple con�icting prefer-
ences in an explanation. In this framework we evaluate welfare bounds for
expansions of the sets of alternatives and for some particular well-documented
irrational behavior patterns in the three alternative case. A brief concluding
section follows. Proofs are in the Appendix.

2 Choice and Welfare Measurement

2.1 Con�ictingMotivations and a VotingModel of Choice

The set of all possible outcomes is X. A typical outcome is a 2 X. A set of
available alternatives A � X is a choice situation. An observation is a pair
(a;A) with a 2 A. We observe choices from a domain A of choice situations
A. Thus the data we need to explain is a choice function c : A ! X
summarizing all the observations (c(A); A) for A 2 A. We will take A to be
the set of all non-empty subsets of A unless otherwise noted.910

The set of all strict orders on X is denoted �. An individual is identi�ed
9One of the strengths of revealed preference theory is that it uses the structure of the

available sets, in particular the linear structure of consumers�budget sets, to make indirect
inferences about preferences. This enables the construction of a preference relation from
familiesA that are far smaller than the set of all non-empty subsets ofX. Moreover, Forges
and Minelli [2006], and Fostel, Scarf and Todd [2004] have extended standard revealed
preference theory to the case of non-linear budget sets, and have shown how sparse A can
be while still enabling the construction of an explanatory preference relation.
10Our model assumes that choice is single-valued. This assumption is not hard to

generalize but doing so would introduce considerable additional notation and complexity
that is not germane to the basic decision theoretic and welfare measurement issues.
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with a probability distribution � 2 ��, the set of all probability measures
over �. Our interpretation of � is that it describes the simultaneously held
preferences that motivate an individual, as well as the strengths of each
of these motivations. For this reason we use the term motivations when
speaking about the orders �. We call � a population of motivations or, for
brevity, a population. An individual�s choice behavior is to be explained
as if the population � were aggregated by some �xed procedure, described
by a correspondence v : �� � A ! X. We will call v a voting rule. The
interpretation of a voting rule is that if the population of motivations is � and
the available set of alternatives is A then v(�;A) is the set of outcomes that
can result when this population votes over the set A.11 Further speci�cations
and restrictions on the voting rules that we consider will be discussed below
in section 2.2.
Thus, we are given a choice function c and seek to explain c "as if" it

were generated by an individual who is characterized by a pair (�; v).

De�nition 1 An explanation of a choice function c is a pair (�; v) consisting
of a population � and a voting rule v such that c(A) 2 v(�;A) for all A 2 A.

For a �xed voting rule v the set of populations � such that (�; v) is an
explanation of c is denoted E(c; v). If the voting rule were not restricted in
some way any choice function can be "explained", and any population � can
be part of that explanation. One could simply let the voting rule ignore � and
chose c(A) whenever the available set is A. Thus all interesting conclusions
of our model are driven by the restrictions that we place of the form of the
voting rule v.
Let us restrict the voting rule by requiring that v lie within a speci�ed

family of rules V . The smaller V is, the fewer explanations of c there will
be. Thus it becomes interesting to ask, for a particular family V , whether
a given choice rule c can be explained by any (�; v) with v 2 V . If such
explanations do exist, the populations � that are part of these explanations
will re�ect the restriction to v 2 V as well as the rationality or irrationality
of c. For example, if c actually satis�es the axiom of revealed preference, and
V includes voting rules that respect unanimity (c(A) is the maximal element

11Notice that we do allow v to be set-valued. The voting rules we use in this paper,
however, have non-singleton values only on a null set of populations, and thus our speci-
�cation of v as a correspondence is for technical correctness only, and not for the purpose
of allowing multi-valued choice at some observations.
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of � on A whenever � is a point mass at �), then there will be a "rational
explanation" of c. There may, however, be other explanations of c as well. To
take one more example, if v 2 V were Plurality rule (c(A) is the element that
maximizes the weight on the �rst choice of � within A, under the distribution
�), then a cyclic choice pattern c will be explainable by (�; v) provided that
� admits the required Condorcet paradox.
In this paper we explore explanations that are based on a particular family

of voting rules, the scoring rules Vs, such as Borda count or plurality. Further
details on the construction of scoring rules are given shortly in Section 2.2.

De�nition 2 A scoring rule explanation of c, is an explanation of c, (�; v),
where v 2 Vs.

Given a choice function c, the set of populations that are associated with
some scoring rule explanation of c is E(c) = [v2VsE(c; v). This is the set
� 2 �� such that (�; v) explains c over A for some v 2 Vs. For the family of
scoring rule explanations of this paper we are interested primarily in three
questions. Which choice functions c have explanations? And for a given
choice function c, what is the setE(c)? We provide answers to these questions
in sections 4 and 5. Finally, given that we have restricted the explanatory
populations to lie in E(c), what can be said about the change in the decision
maker�s welfare when the set of available alternatives varies? We approach
this welfare question in sections 6 and 7.
Decision rules that derive from voting procedures, particularly those that

derive from scoring rules, are interesting for a number of reasons. Scoring
rules ignore cardinal information: only ordinal information is necessary in
order to determine voting outcomes. Thus any di¤erence between the welfare
maximizing outcome and the actual voting outcome can be traced to the fact
that voting via scoring rules ignores the intensities of motivations that a true
welfare maximization would require.12

12However we note that purely ordinal theory forms one endpoint of the continuum of
preference aggregation procedures. In a second paper we study the relationships between
the performance of this ordinal theory and more powerful methods for aggregation that
use increasingly some of the cardinal intensity information to compare the in�uence of
di¤erent motivations. See Green and Hojman (2007).
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2.2 Scoring Rules and Explanations

A scoring rule v 2 Vs is characterized by a set of jXj � 1 scoring vectors
fkgk2f2;:::;jXjg, where k is the scoring vector that applies when the available
set has k alternatives. We write v = (2; 3; :::; jXj) and the k-alternative
scoring vector

k = (
1
k; 

2
k; :::; 

k
k)

has k components satisfying 1k � 2k � ::: � kk, and at least one these
inequalities is strict. The scoring vector gives the number of "points" jk
assigned to the jth ranked alternative among the k alternatives in a subset
A. Without loss of generality we assume 1k = 1 and kk = 0 for all k 2
f2; :::; jXjg. Given a choice situation A � X, k = jAj, and order � that
ranks alternative a as the jth best alternative among those available from A,
the score of alternative a from A under the ordering � is s(a;A; �) = jk.
The total score of alternative a in choice situation A given a population � is
then

s(a;A; �) =
X
�2�

s(a;A; �)�(�).

The result of a vote under v by a population � when the set of alternatives
is A is the set of alternatives that receives the highest score, that is,

v(�;A) = fa 2 Aja 2 argmax
x2A

s(x;A; �)g

Examples of scoring rules include Plurality, the Borda count, and Antiplu-
rality. Scoring rules are a special case of general positional voting rules.13

Example 1 (Plurality) Plurality is characterized by weights jk = 0 for
all k 2 f2; :::; jXjg; j 2 f2; :::; kg. Thus, scoring vectors have the form
sk = (1; 0; :::; 0).

Example 2 (Borda) The Borda count is characterized by weights jk =
k�j
k�1 , k 2 f2; :::; jXjg, j 2 f1; :::; kg.

Example 3 (Antiplurality) Antiplurality is characterized by weights jk =
1 for all k 2 f2; :::; jXjg and 1 � j < k, and kk = 0.
13General positional voting rules are those rules that depend on the rank orders of the

alternatives. In scoring rules this dependence is restricted to be additive �resulting in the
scores s(a;A; �). An axiomatic speci�cation can be found in Young (1975).
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For any scoring voting rule 2 = (1; 0), so that when deciding between
only two available alternatives, all scoring rules are identical. Note also
that, in the case of three alternatives, a scoring rule v is determined by a
single parameter, the weight 23 assigned to the second best choice from three
alternatives.
We conclude this section with an important remark. For a �xed scoring

rule and a choice function c we can rewrite

c(A) 2 v (�;A)

as a set of choice inequalitiesP
�2�

s(c(A); A; �)�(�) �
P
�2�

s(x;A; �)�(�) for all x 2 A: (1)

A key property of these inequalities is their linearity in the population
strengths vector �. Each inequality de�nes a half space in the space of popu-
lations ��. As a result, the set of explanations E(c; v) for a �xed voting rule
v is the polytope de�ned by the set of these linear inequalities for each a 2 A
and each A 2 A.14 Thus, the set E(c) = [v2VsE(c; v) of all populations that
can be part of an explanation is a union of polytopes, which is not necessarily
itself a polytope. We discuss the geometric structure of E(c) and E(c; v) for
v 2 Vs below.

2.3 Welfare Measurement

We use the set of explanations to derive conclusions about welfare changes as
the available set varies. Initially, in sections 4, 5, and 6, we restrict ourselves
to ordinally-based conclusions, by which we mean that all the explanatory
motivations must agree on the welfare evaluation of the outcome. Any mo-
tivations that do not share this evaluation appear in the explanation of the
choice function with a zero weight. Later in the paper, in section 7, we ex-
amine the case of cardinal preferences, which as mentioned above will need
to be based on non-choice based information. When such information is
available we choose to measure welfare based on the natural utilitarian cri-
terion �adding the welfare changes across the population of preferences and

14A polytope is a bounded polyhedron. A polyhedron is an intersection of half spaces.
Since the simplex is bounded, so is the polyhedron de�ned by choice inequalities (1).
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weighting according to the relevant �. In this case we will say that welfare
is improved if the utilitarian sum increases for any explanation in E(c).15

Formally speaking, we approach welfare measurement in the following
sequence of steps:

(W1) Given a domain A of choice instances, observe fc (A)gA2A :

(W2) Given a family of voting rules V compute the set of populations
E(c; V ) = [v2VE(c; v) that can be part of an explanation.

When only ordinal, choice-based, information is to be used in the welfare
analysis, we then proceed to step (W3, Ordinal)

(W3) (Ordinal) Given a change in the set of opportunities from A to B, test
whether there exists � 2 E(c; V ) such that c(A) and c(B) are ranked
in the same way by all � for which �(�) > 0:

For a given change in the available set, step (W3) focusses our attention
on the subset of choice functions for which unambiguous welfare evaluations
are possible for some change in the set of opportunities, de�ned as follows.

De�nition 3 Let F = (A;B) 2 A� A denote a change in the opportunity
set from A to B. A choice function c is said to admit an ordinal welfare
inference at F if there exists � 2 E(c; V ) such that there is unanimity with
regard to the ranking of c(A) and c(B) among the preferences � that are given
strictly positive weight �(�) > 0.

Our de�nition of ordinal welfare inferences relies only on the existence of
a non-con�icted explanation. This existence requirement might seem weak
at �rst glance as there could be several con�icted explanations of the behav-
ior. It must be noted, however, that step (W3) is a natural generalization of
welfare inference in the rational choice model. Indeed, the traditional frame-
work requires the choice data c to satisfy the axiom of revealed preference
and, given that, welfare inferences are performed using explanations that put
all the weight on a single preference.

15Roemer (1996) has o¤ered a powerful argument against the general applicability of the
utilitarian criterion in interpersonal contexts. While the applicability at the intrapersonal
level requires further discussion, objections based on ethical considerations �for example,
egalitarianism or rights-baseed arguments �seem to carry no force in this context.
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If cardinal preference information is available as a basis for welfare mea-
surement it can be summarized by u : X � �! R, which de�nes a cardinal
utility function u(�; �) for each � 2 �. Then it is natural to compute utili-
tarian the welfare functional fW that aggregates the cardinal information.

De�nition 4 The utilitarian welfare functional fW based on the cardinal-
ization u is fW (x; �; u) = P

�2�
u(x; �)�(�) (2)

If cardinal preference information is available we do not need the una-
nimity criterion of step (W3). Welfare can be evaluated directly:

(W3�) (Cardinal) For each � 2 E(c; V ) compute the welfare measure at A
based on �:

W (A; c; �; u) = fW (c(A); �; u): (3)

Of course, as there are multiple explanatory populations the sign of
welfare change may vary with the the choice of this population. For
any � the change in welfare associated to the change in opportunities
F = (A;B) is

�W (F; c; �; u) =W (B; c; �; u)�W (A; c; �; u): (4)

3 A Motivating Example

To make our ideas concrete, we consider a motivating example that concerns
the choice over consumption that is received after a known time delay. Each
alternative a is a particular consumption level ma and an associated delay
ta. We will write a = (ma; ta): We use this example to illustrate the welfare
measurement method proposed above in a familiar economic context.
Take three alternatives x = (10; 0), y = (15; 1) and z = (35; 2). The

choice function de�ned on subsets of these three alternatives will be cyclical
on pairwise choices, and will select x when all three are available:

c(fx; yg) = x; c(fy; zg) = y; c(fx; zg) = z; and c(fx; y; zg) = x:

This pattern is typical of experimental evidence and is a simpli�cation of
examples in Tversky (1969) and Roelofsma and Read (2000).
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To shorten the notation slightly we write xyz to indicate that the pref-
erence ordering � under consideration ranks x above y and y above z. Thus
the six possible di¤erent orderings �i; i = 1; :::; 6 are:

�1 = xyz; �2 = xzy

�3 = yzx; �4 = yxz;

�5 = zxy; �6 = zyx

One can generate all of these preferences from a standard discounted
utility formulation ui((m; t)) = ~ui(m)e�%t in which the Bernoulli utility ~ui(m)
function varies but the time preference parameter % is common across the six
motivations. Moreover the Bernoulli utilities can be chosen so that they are
concave in m.16

Now let us examine some of the explanations that exist for the cyclical c
that has been observed. Given the population, when the set of alternatives
has only two elements, all voting rules produce the same result. Thus, to pro-
duce a cycle on the three two-element sets, the population must be display a
Cordorcet pattern. For example, � = (1

3
; 0; 1

3
; 0; 1

3
; 0) produces pairwise votes

of 2
3
to 1

3
with the majority in favor of the indicated choice in each instance.

Other populations produce the same cyclic choice patterns, but with di¤er-
ent majorities of the motivations in favor of the winner. A borderline case
is the population � = (1

2
; 0; 0; 0; 1

2
; 0) where x is unanimously preferred to y

and there is a tie on the other two two-element sets. Now we consider the
one additional piece of evidence �the fact that x is chosen from the three-
element set. To be part of an explanation, the population must also lead to
this choice, and here the voting rule is relevant to the outcome. If we examine
Plurality rule, for example, then � = (1

3
; 0; 1

3
; 0; 1

3
; 0) produces a three-way tie

on this set, and � = (1
2
; 0; 0; 0; 1

2
; 0) produces a tie between x and z. Thus

these ��s can combine with the Plurality rule to form explanations of c, but
they do not make c(A) the unique score maximizer at every A. Such ties can
be avoided at voting rules other than Plurality. At Antiplurality or Borda
� = (1

2
; 0; 0; 0; 1

2
; 0) produces x as the unique outcome because z is last in �1

and x is second in �5, while � = (13 ; 0;
1
3
; 0; 1

3
; 0) still produces a tie for these

voting rules.
The case of � = (1

2
; 0; 0; 0; 1

2
; 0) is quite interesting because arbitrarily

close to this population are the populations � = (1��
2
; 0; �; 0; 1��

2
; 0). Each of

16See Appendix A.
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these populations, together with some non-Plurality voting rules, uniquely
select all the required choices. Moreover, as � can be made arbitrarily small,
almost all the weight is placed on preferences that favor x over y.
Let us now consider the evidence presented by this choice function as to

the pairwise preference that might be held by this decision maker. For the
pair fx; yg the evidence is unambiguous that x > y. Whenever both x and
y are available, x is selected �independent of the presence or absence of z.
For the pair fx; zg there is contradictory evidence since the presence of y
causes x to be chosen, but z is chosen in y�s absence. For the pair fy; zg the
evidence favors y > z, but as we do not know what the second choice would
have been from fx; y; zg, where x is chosen, the evidence for the preference
x > y must be based solely on choices from the three pairs of alternatives.
We would like to be able to draw inferences as to whether an expansion is

the set of alternatives is good for the decision maker, as it would be for some-
one who is rational. Consider the expansion from A = fy; zg toX = fx; y; zg
and the consequent change in the choice from y = c(A) to x = c(X). Is there
an explanation consistent with the evidence that x is always chosen in pref-
erence to y? We can answer this question in the a¢ rmative by considering
the explanation of c via the population � = (1��

2
; 0; �; 0; 1��

2
; 0). In this ex-

planation there is near unanimity that this expansion is bene�cial. Thus we
see that the irrationality of cyclic choice does not stand in the way of some
explanations which very strongly indicate that the switch from y to x is ben-
e�cial. This example suggests, therefore, that a revealed preference between
two alternatives can be consistent with an arbitrarily large a majority in fa-
vor of the better one, despite unequivocal evidence of irrationality involving
alternatives other than these two. We will see in Theorem 3 that this is a
general proposition.
Considering the other two expansions in the available set of alternatives

leads us to di¤erent conclusions. Going from fx; yg to fx; y; zg is irrelevant
to welfare, as x is chosen in both instances. Going from fx; zg to fx; y; zg
switches the choice from z to x. One can show, however, that there is no
explanation of c that puts all the weight, or approximately all the weight,
either on preferences concentrated on x > z or on preferences concentrated
on z > x. Non-trivial con�ict is a necessary ingredient in any explanation
of this choice function, as far as the pair fx; zg is concerned. Therefore, as
we are restricting ourselves to ordinal information about the motivations,
there is no explanation from which we can decide which of these alternatives
is preferred. The fact that this type of ambiguous welfare conclusion is an
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unavoidable consequence of irrational choice patterns is a general proposition
�see Theorem 4.
Now let us turn to the case in which cardinal welfare measures are avail-

able for each of the motivations. Cardinal information in our model must
come from observations beyond the choice function itself. We need such car-
dinal information if we are going to make welfare comparisons in ambiguous
cases such as that of x versus z above. For concreteness, let us use as this
cardinal measurement the parameters of Appendix A in the Bernoulli utility
that represents each motivation.
For these parameters we can see that quantitative welfare measurement

is ambiguous in sign even for an expansion for which there is unambiguous
evidence of pairwise preference �as in the comparison of x to y. This can
be shown by considering the following two explanations of c: (�; vP ), with
� = (:43; 0; :40; 0; :17; 0) and vP is Plurality rule, and (�0; vA), with �0 =
(:40; 0; :17; 0; :40; :03) and vA is Antiplurality. W (fy; zg; c; �; u) = 1:176 and
W (fx; y; zg; c; �; u) = 1:165, yielding a decrease in utilitarian welfare. On the
other hand, for the population �0 we obtain W (fy; zg; c; �0; u) = 1:149 and
W (fx; y; zg; c; �0; u) = 1:174, so that the welfare change for the explanation �0
is positive. Thus in this example the sign of the cardinal welfare evaluation for
the expansion from fy; zg to fx; y; zg is ambiguous, even though the decision
maker has revealed no irrationality with respect to the two alternatives that
are chosen before and after the expansion. We return to this issue in sections
6 and 7.

4 Choice Rules in the Three Alternative Case

We provide a classi�cation of choice rules and a characterization of the choice
functions that can be explained by our theory above for the case in which X
has three elements. The results for the general case are presented in Section
5. For concreteness, let X = fx; y; zg.

4.1 The Four Choice Rules

If X has three alternatives there are four possible choice situations, three
corresponding to choices from two-element subsets of X and one for choice
over the entire set. This yields twenty-four possible choice rules for the three-
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alternative case17 which can be classi�ed into four choice patterns: Seemingly
Rational Choice, Second Place Choice, Third Place Choice and Cyclic Choice.
Rules in the same class are formally identical modulo a permutation of the
alternatives.
The �rst three classes of choice rules have in common the existence of an

alternative xr which is "Condorcet winner" in pairwise contests. Let xs and xt

denote the other alternatives, where xs = c(Xnfxrg) is the "second-place"
choice and xt is the "third-place" choice, xt =2 ffxr; xsg. When pairwise
choice exhibits a Condorcet winner in this three-alternative environment,
pairwise choice will have "revealed" a preference relation xr � xs � xt. For
example, if X = fx; y; zg the following choice function

c(fx; yg) = x; c(fx; zg) = x; c(fy; zg) = y

has xr = x, xs = y and xt = z which is consistent with the order "x over y
over z". The question remaining, however, is whether this preference relation
also characterizes the choice when all three alternatives are available.
The three classes of choice rules are de�ned by the choice from the triple.

If c(X) = xr the choice rule is Seemingly Rational. If c(X) = xs the choice
rule displays Second Place Choice. If c(X) = xt the choice rule displays Third
Place Choice. Clearly, second and third place choice are not consistent with
explaining choice based on the maximization of a single preference relation.
When pairwise choice does not exhibit a Condorcet winner, Cyclic Choice,

the fourth class of choice rules, exists. For example,

c(fx; yg) = x; c(fx; zg) = z; c(fy; zg) = y: (5)

This example exhibits the cycle "x over y over z over x".18

We conclude this section remarking that the three patterns inconsistent
with rational behavior have been documented by the experimental psychol-
ogy and decision-making literature that focuses on context e¤ects in choice
with multi-attribute alternatives. A classic paper by Tversky (1969) and

17There are three two-alternative choice instances and the choice instance corresponding
to the triple give 24 = 2� 2� 2� 3.
18The absence of a Condorcet winner necessitates the existence of a pairwise cycle with

three or more elements. Consider the directed graph in which each vertex is an alternative
in X and there exists a directed edge from a vertex a to another vertex a0 if c(fa; a0g) = a.
If c does not have a Condorcet winner this means that each vertex has an outgoing edge
and, since there are a �nite number of edges, the graph must contain a directed cycle.
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more recent work by Roelofsma and Read (2000) show that cyclic choice can
arise systematically. There is also robust evidence of Second Place Choice,
as shown by Simonson (1989). Third place choice seems to be more elusive
but Redelmeier and Sha�r (1995) �nds this pattern.19

4.2 Characterizing Explanations in the Three-Alternative
Case

In the case of three alternatives the set of all orderings � has six elements.
As in Section 3, we adopt the concise notation that, for a generic � 2 �; if
a1 is preferred to a2 and a2 is preferred to a3 we write � = a1a2a3. With this
notation the six strict orderings are

�1 = xyz; �2 = xzy

�3 = yzx; �4 = yxz;

�5 = zxy; �6 = zyx

and a population of motivations � 2 �6 is a probability distribution over
these six orderings. For short, we write �i = �(�i) for each i = 1; 2; :::; 6:
As mentioned earlier, with three alternatives a positional voting proce-

dure v is determined by a single free parameter 23 2 [0; 1] and therefore, we
can identify the voting rule with this parameter: v = 23 2 [0; 1]. We are
interested in characterizing the set of choice functions that can be explained
by these rules. As illustrated by the following examples, given a positional
voting rule v, if (�; v) is an explanation of a choice function c then �ve choice
inequalities must be satis�ed.

Example 4 Explaining Seemingly Rational Choice

Consider the following Seemingly Rational choice function

c(fx; yg) = x; c(fx; zg) = x; c(fy; zg) = y; c(fx; y; zg) = x: (6)

19The prevailing psychology theories include sequential decision-making procedures such
as elimination by aspects or theories based on context-dependent salience such as asym-
metric dominance. A more comprehensive theory called reason-based choice is proposed
by Sha�r, Simonson, and Tversky (1993). This theory, based on the idea that the context
determines which among of many con�icting reasons prevails in a given choice situation,
is close in spirit to the model presented in this paper.
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For an explanation based on voting rule v 2 [0; 1] the choice inequalities in
(1) translate into

�1 + �2 + �5 � �3 + �4 + �6 (7a)

�1 + �2 + �4 � �3 + �5 + �6 (7b)

�1 + �2 + �4 � �3 + �5 + �6 (7c)

�1 + �2 + v(�4 + �5) � �3 + �4 + v(�1 + �6) (7d)

�1 + �2 + v(�4 + �5) � �5 + �6 + v(�2 + �3) (7e)

Inequalities (7a)-(7c) correspond to choices from pairs of alternatives and
express respectively that x beats y in the pairwise contest, x beats z in the
pairwise contest, and y beats z in the pairwise contest. Inequalities (7d)-(7e)
correspond to choice from the triple and express that x has a higher score
than y and z when all three alternatives are available. E(c; v), where c is
the seemingly rational choice function, is the set of solutions to these �ve
inequalities under the restriction that � is in the �ve-dimensional simplex
�6.

Example 5 Explaining Second-Place Choice

Consider the Second-Place Choice rule

c(fx; yg) = x; c(fx; zg) = x; c(fy; zg) = y; c(fx; y; zg) = y:

An explanation of c based on v must satisfy inequalities (7a)-(7c) and

�3 + �4 + v(�1 + �6) � �1 + �2 + v(�4 + �5)

�3 + �4 + v(�1 + �6) � �5 + �6 + v(�2 + �3)

These two inequalities express the fact that y beats x in the triple y beats z
in the triple.
The following Theorem characterizes the set of choice observations that

can be explained using a scoring rule.

Theorem 1 Suppose that jXj = 3. For any choice function c there exists a
full measure set of explanations E(c).
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The content of Theorem 1 is that this theory of choice is rich enough to
explain any choice function on three-element sets. The result can be viewed
as a limitation of the theory as it also implies that it cannot be rejected based
on choice data from three-element sets. On the other hand, as mentioned
earlier, the psychology evidence suggests that in fact all choice patterns can
be observed. Finally, the speci�c structure of a choice problem may impose
constraints on the motivations and con�icts that are feasible. For example,
we may know from external evidence that certain "reasons" or motivations
are simply absent in a given choice problem. Alternatively we may deem
certain preferences to be a priori unreasonable and we may restrict the theory
to give them a zero weight in any explanation. Such reduction of the set of
possible orderings could result a greatly reduced set of explanations, indeed
it can produce situations in which some choice patterns have no explanation
within the theory as illustrated by the example below. Without such external
restrictions however, the theorem above tells us that no behavior pattern can
be ruled out a priori.

Example 6 Each alternative a = (ma; ea), a 2 X, is a job opportunity
with two attributes. To �x ideas ma is a monetary compensation for a and
ea is an "ethical reward" measured in a numerical scale. Alternatives are
such that mx > my > mz and ez > ey > ez.20 There are two motivations
that rank according to one attribute alone. Using the above notation, the
motivation ranking according to the monetary compensation is �1 and the
motivation ranking according to the ethical reward is �6. Thus, the domain
of populations is restricted by �1 + �6 = 1. It is straightforward to check
that if c display either cyclic choice or third-place choice then E(c) is either
empty or has measure zero.

Theorem 1 is a consequence of the following Lemma, a special case of the
results presented in the next section.

Proposition 1 Suppose that jXj = 3. If v 2 Vs is a voting rule other than
the Borda count (v 6= 1

2
) then for any choice function c and any there exists

a full measure set E(c; v) of explanations of c based on v. If v is the Borda
count (v = 1

2
) then for any choice function c that does not display third-place

choice there exists a full measure set E(c; v) of explanations of c based on v.

20Thus x could be a lucrative job that involves criminal activities, z a low paid job
helping the poor, and y an academic job.
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The Lemma says that, excluding the Borda count, for any voting rule v
and any given choice function c it possible to �nd populations of motivations
� such that (�; v) is an explanation of c. The fact that third-place choice is
ruled out by the Borda count illustrates that restricting the set of voting rules
can also reduce the behaviors explained by the theory (see also Proposition
2). We note that each set E(c; v) is a polytope de�ned by inequalities just
like those in (7a)-(7e). Thus, for each v, the simplex of motivations �6 is
cut up into 24 pieces each of which is a polyhedron within which the choice
rule is constant.21 All of these polyhedra are pointed cones that touch at
one point, the pro�le that puts equal weight to each ordering in �. Each of
the polyhedra that contains a vertex of the simplex -a pure motivation- is
associated with seemingly rational choice.

5 The General Case

The results presented for the three-alternative case generalize for any number
of alternatives.

Theorem 2 For any choice function c there exists a full measure set of
explanations E(c).

The Theorem follows from the following Lemma, which is originally due
to Saari (1989, 2001).22

Lemma 1 For any function c and almost any voting rule v there exists a
full measure set of explanations E(c; v) based on v.

A proof is provided in the Appendix. We outline the main argument
of the proof. Observe that each voting rule v de�nes a linear scoring map
S : �� ! � where �� is the set of populations and � = �

A2A
�A is a space

of all possible scores, with �A � RjAj. Indeed, for each subset of alternatives
A 2 A, a population � 2 �� produces a vector of scores s(A; �) 2 �A that
21Any element of the polytope E(c; v) is a convex combination of its vertices. For

jXj = 3, the vertices of E(c; v) for each type of choice function c and arbitrary voting rule
v are available at the authors web pages.
22The authors thank J.P. Benoit for pointing this out. The proof presented in the

Appendix uses an argument similar to Saari (1989).
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has as components the score of each alternative in A. Since these scores are
linear in �, so is s(A; �). The scoring map S is a stack of all of these vectors.
The result is established by showing that, except for a lower dimensional set
of voting rules, the map S is onto: for any possible stack of scores � 2 � we
can �nd a population � 2 �� such that S(�) = �. This means that we can
generate any possible scores for each alternative and each subset and, thus,
any choice function by varying the population of motivations. A key insight
for the result is that, for a generic scoring rule, populations that achieve the
same voting results (choices) for a subset of the domain B � A, can achieve
arbitrarily di¤erent results for subsets that are not in B. In particular, the
voting results obtained for pairs of alternatives place no constraint on the
results for larger subsets. Scoring rules have just enough degrees of freedom
to make this possible.

De�nition 5 A voting rule v = (2; :::; n) is said to be a generalized Borda
rule if the k-alternative voting vector k, k 2 f2; :::; ng, satis�es

jk =
j � 1
k � 1

j�1
k�1 +

k � j
k � 1

j
k�1

for j 2 f2; :::; k � 1g.

Generalized Borda rules de�ne a lower dimensional family of scoring
rules. These rules satisfy a form of consistency: Fix a set A 2 A, a 2
A, and let K(a;A) be the collection of jAj � 1 subsets of A that contain
a. It is easy to check that for any generalized Borda rule s(a;A; �) =
1

jAj�1
P

B2K(a;A) s(a;B; �) for any population �. That is, the score of a from
A is just the average score of a across subsets inK(a;A). But then, s(a;B; �)
is the average score of a across the jAj � 2 subsets in K(a;B), and so on.
Continuing with this recursion we conclude that for generalized Borda rules,
the scores for any subset are fully determined by the scores obtained for pairs
of alternatives. As a consequence, it will not be possible to explain all choice
rules using generalized Borda rules as shown by Proposition 2 below.

De�nition 6 Fix a choice function c and A 2 A. Two alternatives xw; xl 2
A are pairwise separated by A for c if (i) c(fxw; xg) = xw for all x 2 Anfxwg
and (ii) c(fxl; xg) = x for all x 2 Anfxlg.
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Condition (i) says that c has an alternative xw that is a "Condorcet
winner" among those in A and (ii) says that xl is a "Condorcet loser" in A.
In particular, this means that each of the scores of xw in pairwise contests is
higher than the scores obtained by xl in pairwise contests.

Proposition 2 Suppose that a choice function c is such that there exists
a subset of three or more alternatives A 2 A such that (i) xw; xl 2 A are
pairwise separated by A for c and (ii) c(A) = xl. If v is a generalized Borda
rule then there exists no explanation of c based on v, i.e., E(c; v) = ;.

Note that if jXj = 3, (i) and (ii) is equivalent to saying that c displays
third-place choice. Condition (ii) says that even though xl is a Condorcet
loser in A, it chosen when all alternatives in A are chosen. Proposition 2
illustrates the fact that by restricting the family of aggregation procedures,
choice functions that exhibit certain types of irrationality will be ruled out.

6 Ordinal Welfare Inferences

This section presents the paper�s main normative conclusions. Two tenets of
welfare economics in the rational choice model are revealed preference -if x
is chosen over y, x is better than y- and the fact that more choice is always
better. We ask whether a limited forms of behavior consistency lead to
similar welfare inferences even if choice data is not compatible with rational
choice.

6.1 Pairwise Coherence

In the rational choice model choice and welfare are perfectly aligned: choices
are consistent and if choice data reveals that x is always chosen over y this
is because the decision-maker�s welfare is higher under x than it is under
y. Our welfare method allows for choice patterns that incompatible with
rational choice. If this indeed the case but choice data is such that x is
always chosen over y, can we infer that that welfare increases if the available
set changes from a set A having y = c(A) to a set B having x = c(B)? This
motivates a key concept of limited consistency:

De�nition 7 A choice function c is said to be pairwise coherent with respect
to (x; y) 2 X2 if for any A that contains both x and y we have that c(A) 2
fx; yg ) c(A) = x.
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Pairwise coherence is a version of the consistency axioms of rational choice
theory valid for particular pair rather than all pairs.23 In the case of three-
alternatives, there two type of choice functions that exhibit pairwise coher-
ence. Using the notation introduced in section 3.1, the seemingly rational
choice is pairwise coherent with respect to two pairs: (xr; xs) and (xs; xt).
The second type are choice functions that display cyclic choice. If c displays
cyclic choice and is given by (5), then c is pairwise coherent w.r.t (x; y).

Theorem 3 Let A;B 2 A with y = c(A) and x = c(B). If c is pairwise
coherent with respect to (x; y) there exists an explanation � 2 E(c) that puts
weight exclusively on motivations that prefer x over y. In particular, c admits
an ordinal welfare inference for a change in the available set from A to B.

Theorem 3 says that if c is such that x is always chosen over y, no matter
how crazy the choice pattern c, there is always an explanation of the behavior
that involves motivations which are not con�icted with respect to this pair
of alternatives. As a consequence, for this choice function, one can never
rule out a welfare improvement if opportunities change from a set where y
is chosen to one where x is chosen. It also worth to point out that if c is
pairwise coherent w.r.t. (x; y) there is an upper bound of 1=2 on the strength
of motivations that prefer y over x.24

The following Proposition is a partial converse to Theorem 3. We �rst
introduce a non-generic set of scoring rules.

De�nition 8 A scoring rule v = (2; :::; jXj) has equal components if for
some k 2 f2; :::; jXjg; j1; j2 with 1 � j1 < j2 � k we have j1k = 

j2
k .

Scoring rules with equal components are sometimes non-responsive, or
"rank-insensitive" to switches in preference orders.

Proposition 3 If c is not pairwise coherent w.r.t. (x; y) and v does not have
equal components there exists no explanation � 2 E(c; v) that puts weight
exclusively on motivations that prefer one alternative over the other.
23The choice functions compatible with rational choice are those satisfying Houtakker�s

axiom. Let a; a0 2 X and caa0 = fA 2 Aj c(A) 2 fa; a0gg. One version of this axiom is
as follows: For any pair of alternatives a and a0, either a 2 c(A) for all A 2 caa0 or else
a0 2 c(A) for all A 2 caa0 . If c(A) is a singleton for all A 2 caa0 , one can replace "2"
with "=". Hence, the axiom just says that for c there are no "preference reversals": ignor-
ing indi¤erences, either a is "revealed preferred" to a0 or vice-versa. Pairwise coherence
establishes the same for a particular pair a = x and a0 = y.
24This is immediately inferred from c(fx; yg) = x.
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The Proposition says that whenever there is con�icting choice data about
the revealed preference between two alternatives, all explanations that rely
on "rank-sensitive" scoring rules arise from population of motivations that
are con�icted with respect to these alternatives.

6.2 Expansion Monotonicity

If choice is seemingly rational and thus consistent with the optimization of a
preference, the maximal element of this preference must be c(X), the choice
when all alternatives are available. The second best element can be inferred
by looking at the choice from Xnfc(X)g. If we continue this iteration by
deleting alternatives that are chosen in larger sets, we can infer the entire
preference relation. In our case, c need not be consistent with optimiza-
tion. However, as shown below, the order just described is still important to
determine whether expanding the set of opportunities is bene�cial.
For the remainder of the section we assume that there exists a wel-

fare functional fW (�; �) : X ! R that represents welfare for an individual
with characterized by a population �. We use �W (F; c; �) = fW (c(B); �) �fW (c(A); �) for the change in welfare corresponding to a change F = (A;B) 2
A�A in available opportunities. The change in the opportunities F = (A;B)
is said to be an expansion if A is a strict subset of B. We introduce a concept
of partial consistency closely related to expansions:

De�nition 9 Let xn(c) = c(X) and xj(c) = c(Xnfxj+1(c); :::; xn(c)g) for
j = 1; :::; n � 1. Let �c be the order on X de�ned by xj(c) �c xk(c) if and
only if j > k. A choice function c is said to be expansion-monotonic with
respect to �c if for any expansion F = (A;B) with A � B we have that
c(B) �c c(A):

In the case of three alternatives it is easy to check that an expansion-
monotonic choice function c must be seemingly rational. With more than
three alternatives the set of expansion-monotonic choice functions is larger.
An example of a choice function that is expansion-monotonic but not seem-
ingly rational when X = fx; y; z; wg has four alternatives is

c(fx; yg) = y; c(fx; zg) = z; c(fx;wg) = w; c(fy; zg) = y; c(fy; wg) = w; c(fz; wg) = z
c(fx; y; zg) = y; c(fx; y; wg) = y; c(fx; z; wg) = z; c(fy; z; wg) = y

c(X) = x
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De�nition 10 Fix a welfare functional fW . A choice c rule admits positive
expansions under fW if there exists � 2 E(c) such that for any expansion
F = (A;B) we have that �W (F; c; �) � 0.

The next result provides necessary condition on choice functions that
admit positive expansions:

Proposition 4 Fix any welfare functional fW . If c admits positive expan-
sions under fW then c is expansion-monotonic with respect to �c.

7 Utilitarian Bounds and the Value of Ex-
pansions

This section explores welfare inference when non-choice cardinal informa-
tion is available. The focus is on utilitarian welfare measures. The method
described in section 2.3 gives rise to a family of measures, one for each pop-
ulation � 2 E(c) consistent with the choice observations. The practical use
of this program rests on the ability to compute these measures e¢ ciently.
We start by showing how to exploit the structure of the set of explanations
E(c) to derive welfare bounds. Next, we illustrate how to use these bounds
to determine whether an expansion of the set of opportunities is bene�cial
or harmful.

7.1 Welfare Bounds and Basic Voting Rules

We describe how to obtain bounds for two sets of welfare measures. The
�rst set of measures is simply W (A; c; u) = fW (A; c; �; u)g�2E(c) as de�ned
by (3). The upper and lower bounds for W (A; c; u) are

Wmin(A; c; u) = inffW (A; c; �; u) j � 2 E(c)g and (8)

Wmax(A; c; u) = supfW (A; c; �; u) j � 2 E(c)g;

the worst and best welfare measures at A.
In the case of utilitarian welfare measures (4) reduces to

�W (F; c; �; u) =
X
�2�

�u(F; c; �)�(�); (9)
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where �u(F; c; �) = u(c(B); �) � u(c(A); �). This is simply the average
change in utility for a population � 2 E(c) consistent with the observed
choice function c. The set of welfare evaluation measures associated to this
change in opportunities is �W (F; c; u) = f�W (F; c; �; u)g�2E(c) with upper
and lower bounds given by

�Wmin(F; c; u) = inff�W (F; c; �; u) j � 2 E(c)g and (10)

�Wmax(F; c; u) = supf�W (F; c; �; u) j � 2 E(c)g:

BothW (A; c; �; u) and�W (F; c; �; u) are linear functions of �, so calculating
the above bounds amounts to solving a optimizationproblem with a linear
objective of the form

Z(c; r) = minfrt�j� 2 E(c)g,

where r 2 R�. It follows that the extremal values will be realized at an
extreme point of E(c). However, E(c) is a union of polyhedra which, in
general, is not itself a polyhedron nor even a convex set. In principle, �nding
the extreme points of an arbitrary set can be hard.
For each j 2 f1; :::; k � 1g, k � 2, let ejk be the k�component vector

having its �rst j components equal to one and its last k � j components
equal to zero.

De�nition 11 A k-alternative voting vector k 2 [0; 1]k is said to be basic
if k = e

j
k for some j 2 f1; :::; k � 1g. A voting rule v = (2; :::; n) is said

to be basic if for each k 2 f2; :::; jXjg vector k is a basic voting vector. The
set of basic voting rules is denoted by V basic.

It is easy to verify that if n = jXj, there are (n � 1)! basic voting rules.
If jXj = 3 the only two basic voting rules are Plurality and Antiplurality.

Proposition 5 Fix r 2 R� and a choice rule c. Let Z(c; r; v) = minfrt�j� 2
E(c; v)g. Then Z(c; r) = Z(c; r; bv) for some basic voting rule bv. In particular,
Z(c; r) = minfZ(c; r; v)jv 2 V basicg.

Observe that Z(c; r; v) = minfrt�j� 2 E(c; v)g is a standard linear pro-
gram (LP) as E(c; v) is a polyhedron. Thus, Proposition 5 provides a simple
procedure to compute utilitarian bounds: (1) Compute the corresponding
lower (upper) bound for each basic voting rule by solving a LP; (2) Use the
smallest (largest) of these values.
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Corollary 1 Suppose that jXj = 3. Let vP and vA denote respectively the
Plurality and Antilplurality scoring rules. Each of the bounds de�ned by (8)
and (10) over all explanations is attained by a population which is either a
vertex of the polytope E(c; vP ) or a vertex of E(c; vA).

To compute an upper bound it su¢ ces to solve two LP, one where the
feasible set is E(c; vP ) and one in which the feasible set is E(c; vA). The upper
bound is simply the highest of the values associated to these LP. Similarly,
lower bounds are obtained by solving two linear minimization programs, one
where the feasible set is E(c; vP ) and one in which the feasible set is E(c; vA).
The lower bound is the minimum of the values associated to these LP.

7.2 Surely Bene�cial and Surely Harmful Expansions

Consider an expansion F = (A;B), where A � B. If we observe a choice
pattern c, what can we say about the set of welfare measures associated to
the expansion �W (F; c; u)? Our goal is to identify restrictions on the u and
c that allow to determine whether an expansion is surely bene�cial or surely
harmful.

De�nition 12 Fix a choice rule c and an expansion F = (A;B) 2 A � A.
If the expansion changes the choice, c(A) 6= c(B), the choice rule is said to
be choice-varying at F . The set of choice-varying expansions for c is denoted
by F(c).

If an expansion does not change the choice then the welfare change is triv-
ially zero. We restrict attention to expansions in F(c), i.e., those associated
to changes in the choice.
Since the welfare measure is an average across the population, these re-

strictions depend crucially on two variables, the relative strength of motiva-
tions favored by the expansion vis a vis those hurt by it, and the magnitude
of the gains and losses associated to each group of motivations.
Given a choice rule c and an expansion F = (A;B) 2 F(c), let �+(F; c) =

f� 2 � j c(B)�(A)g be the set of motivations that gain from the expan-
sion. The set of motivations that are hurt by the expansion is ��(F; c) =
���+(F; c). For each � 2 E(c) we de�ne

�+(F; c; �) =
X

�2�+(F;c)

�(�)
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and
��(F; c; �) =

X
�2��(F;c)

�(�) = 1� �+(F; c; �);

the strength of motivations favored respectively hurt by this expansion. The
ratio

�(F; c; �) =
�+(F; c; �)

1� �+(F; c; �)
measures the relative strength of these motivations. For a symmetric cardi-
nalization pro�le in which all motivations have the same utilities, this number
is su¢ cient to determine whether an expansion is bene�cial or harmful at �.
However, we may not be able to compute this measure as � is not directly
observed. Knowing that � 2 E(c) it is possible to estimate the upper and
lower bounds given by

�(F; c) = inf
�2E(c)

�(F; c; �) =
�+(F; c)

1� �+(F; c)

and

�(F; c) = sup
�2E(c)

�(F; c; �) =
�+(F; c)

1� �+(F; c) :

Here �+(F; c) = min�2E(c) �
+(F; c; �) and �+(F; c) = max�2E(c) �

+(F; c; �).
Since �+(F; c; �) is linear in �, Proposition 5 and Corollary 1 can be used to
calculate these numbers.
Finally, we introduce notation for bounds on the gains and losses asso-

ciated to an expansion F 2 F(c) for a �xed cardinalization u. Let g(u; F; c) =
min�2�+(F;c) j�u(F;X; c; �)j respectivelyG(u; F; c) = max�2�+(F;c) j�u(F; c; �)j
be the smallest respectively largest gain across motivations that bene�t from
the expansion. Let l(u; F; c) = min�2��(F;c) j�u(F; c; �)j respectively L(u; F; c) =
max�2��(F;c) j�u(F; c; �)j be the smallest respectively largest loss across mo-
tivations hurt by the expansion.

Theorem 4 Fix a cardinalization u, a choice rule c, and a choice-varying
expansion F 2 F(c).

(i) If
L(u; F; c)

g(u; F; c)
< �(F; c) then �Wmin(F; c; u) > 0;

(ii) If
l(u; F; c)

G(u; F; c)
> �(F; c) then �Wmax(F; c; u) < 0:
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Theorem 4 provides two "likelihood ratio test" conditions.25 The left hand
side of the inequality in (i) is an upper bound on the loss of a motivation
hurt by the expansion relative to the gain from a motivation that bene�ts
from it. The right hand side � is a lower bound on the ratio of the strengths
of motivations that bene�t and those that lose from the expansion. These
ratios are independent of u: Lemma 2 below provides these bounds for each
possible c and F 2 F(c) in the case jXj = 3. The condition says that if
the relative loss is small relative to the strengths ratio an expansion is surely
bene�cial for that cardinalization. The second condition compares a lower
bound of the relative loss with an upper bound � of the strengths ratio. If
satis�ed an expansion is surely detrimental for that cardinalization. The
example below illustrates that these bounds are tight.

De�nition 13 Fix a choice rule c. An expansion F = (A;B) 2 F(c) is said
to be pairwise coherent if c is pairwise coherent with respect to (c(B); c(A)).

Observe that, from Theorem 3, if F is a pairwise coherent then �(F; c) =
+1. Hence, for a pairwise coherent expansion the hypothesis of (ii) will
not be satis�ed for any cardinalization u. This means that pairwise coherent
expansions are always bene�cial at some explanation, something we already
knew from Theorem 3.
Using Corollary 1 we obtain the following:

Lemma 2 Suppose that jXj = 3. Fix a choice rule c and a choice-varying
expansion F 2 F(c).

(i) If c is seemingly rational �(F; c) = 1 and �(F; c) = +1;

(ii) If c displays second-place choice �(F; c) = 0 and �(F; c) = 1;

(iii) If c displays third-place choice �(F; c) = 1
3
and �(F; c) = 1;

(iv) If c displays cyclic choice �(F; c) = 1 and �(F; c) = +1 if F is a
pairwise coherent expansion and �(F; c) = 1

3
and �(F; c) = 1 if F is not

pairwise coherent.

25In classical decision theory, the optimal decision to accept or reject a hypothesis is
often expressed as condition based on a critical value for the likelihood ratio.
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Larger values of � are associated with a higher presence of motivations
that bene�t from the expansion. The strength of motivations that bene-
�t from expansions is highest for seemingly rational choice rules. Cyclic
choice seems to dominate second-place and third-place choice functions in
this dimension. Interestingly, the upper and lower bounds associated to the
pairwise coherent expansion for cyclic choice are exactly the same than those
associated to the only choice-varying expansion for seemingly rational choice
(which is also pairwise coherent).

Example 7 Harmful Expansion with Seemingly Rational choice

Suppose that X = fx; y; zg. Let c be the seemingly rational choice func-
tion described by (6) and A = fy; zg. Consider the expansion F = (A;X)
and observe that c(A) = y and c(X) = x. The set of motivations that gain
is �+(F; c) = f�1; �2; �5g and ��(F; c) = f�3; �4; �6g.
Consider a cardinalization u such that�u(F; c; �) = 1 for all � 2 �+(F; c)

and �u(F; c; �) = �(1 + �) for all � 2 ��(F; c), � > 0. Thus, g = G = 1
and L = l = 1 + �. From Lemma 2, �(F; c) = 1. Thus, this cardinalization
violates the hypothesis of (i) as � > 0. We show that at some explanation
�W < 0. Indeed, for a small � > 0, consider the population � de�ned by

�1 =
1
2
+ �, �2 = �, �4 = 1

2
� 2�:

It is easy to verify that � and any voting rule v explains c. The welfare
change for this pro�le is

�W = �1
2
�+ �(2 + �):

Clearly, for any � there exists an � small enough such that �W < 0.
The example illustrates two issues. First, the hypothesis of (i) is tight:

a small departure from the condition (� is arbitrary) can reverse the con-
clusion. The same is true for the hypothesis of (ii). Secondly, it also shows
that expansions can be harmful even if observed behavior is consistent with
rationality, as would be the case for an individual who consistently chooses
a self-destructive outcome.

8 Conclusion

We have modeled potentially non-rational choice as a con�ict between simul-
taneously held motivations with possibly di¤erent strengths. We assume,
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following the long-standing tradition of revealed preference theory, that the
individual�s choice is observed and we seek to describe it "as if" it arose from
the aggregation of con�icting preferences. In this paper we have restricted
ourselves to aggregation rules that are purely ordinal, taking the form of a
scoring rule.
The task of economic analysis is to determine which con�icting prefer-

ences could give rise to the observed choice function. Once these preferences
are known, welfare analysis can use them to evaluate the e¢ cacy of any given
change in the set of alternatives that is available. We have given a general
method under which this program can be carried out. The principal bene�t
from using our method to �nd the set of underlying preferences is that we
can use these preferences to measure welfare changes for choice patterns that
are not necessarily compatible with the maximization of a single preference.
Our theory shows that all choice patterns are in fact possible as the

result of the aggregation of con�icting motivations by voting methods that
are scoring rules. Interestingly, in the case of three alternatives, there are
four possible patterns of choice and all have been experimentally observed.
We also show that a priori restrictions of the set of motivations or scoring
rules can reduce the patterns of behavior explained by the theory.
In the absence of cardinal information, the existence of an explanation

that is non-con�icted with respect to a change in the choice associated to a
changes in opportunities is the natural extension of traditional ordinal welfare
inferences. We identify a limited consistency condition -pairwise coherence-
and �nd that some of the traditional revealed preference inferences hold for
choice data that satis�es it.
If non-choice information about the intensity of preferences is available,

it can be used to produce a set utilitarian welfare measures one for each
explanation consistent with the observed data. We show how to compute
bounds on the set of welfare changes associated to a change in the set of
available opportunities. In the case of an expansion of the available alterna-
tives, we show that there are some changes that are surely bene�cial while
others may or may not be bene�cial, and we demonstrate the sensitivity of
this result choice function that has been observed and to the cardinalization
of utilities that represent the intensity of preference within each motivation.
We illustrate the fact that welfare inferences based on cardinal information
can contradict ordinal welfare inferences based purely on choice data.
In future work we will try to allow for con�icting motivations to be aggre-

gated by rules that incorporate some of the cardinal information available.
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We will also look for criteria under which some explanations can be dropped
and others can be highlighted. The aim in all these endeavors will be to
provide sharper welfare inferences than those available from the method in
the present paper alone.
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A Example

We let % = 0:3, meaning that each period of delay in consumption reduces
the utility of consumption to 0:74 of its prior value. It is easiest to take the
logarithm of the utility, obtaining hi(a) = �ia � %ta; where �ia = ln ~ui(ma).
We want to insure that the preferences captured by the functions ui do in
fact rank the three pairs (xa; ta) in all six of the possible orders. We also
need to respect the monotonicity of the ~ui, which requires �ix < �iy < �iz
for i = 1; :::; 6. Consider the following values for the parameters �ia :

i n a x y z
1 0:20 0:45 0:70
2 0:20 0:40 0:75
3 0:15 0:50 0:70
4 0:10 0:50 0:75
5 0:10 0:45 0:80
6 0:15 0:40 0:80

Using these �ia it can be veri�ed that

h1(x) > h1(y) > h1(z)

h2(x) > h2(z) > h2(y)

h3(y) > h3(z) > h3(x)

h4(y) > h4(x) > h4(z)

h5(z) > h5(x) > h5(y)

h6(z) > h6(y) > h6(x):

Thus, each motivation ui has a di¤erent ranking over the alternatives. It is
also convenient that the realized values hi(a) = 0:2; 0:15 and 0:1, depending
on whether a is �rst, second, or third in the order speci�ed by preference
i. It can also be veri�ed that each ~uj is risk averse over the three possible
payo¤s, 10, 15 and 35.

B Proofs

B.1 Explanations

Proof of Lemma 1
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We omit reference to the voting rule v which is assumed to be �xed. Let
n = jXj and Q = jAj = 2n � n� 1 be the number of subsets of two or more
alternatives. The number of orderings over X is j�j = n!.
We start by noting that any explanation � 2 �� can be decomposed as

� = � + e�
j�j , where e� 2 R

� is a vector of ones. Hence, e�
j�j 2 �

� is the
explanation that assigns equal weight to each preference in � and � is the
deviation from this explanation. Since � is in the simplex, the deviation
vector � satis�es eT�� = 0. Note also that, for any explanation � and any
subset A, adding the scores across alternatives in A gives the total number
of points WA =

PjAj
j=1 

j
jAj, which is independently of �. This means that,

for each subset and each for deviation �, the scores of alternatives add up
to zero . For any subset A, the pro�le e�

j�j yields the same score for each
alternative a 2 A. The result is established if we show that, for any c it is
always possible to �nd a deviation � that breaks these ties as speci�ed by
c. This is done by showing that we can achieve any possible scores for each
subset as we vary the deviation � 2 �� = fx 2 R� j eT�x = 0g.
We need to introduce some notation. Each voting rule induces a linear

scoring map S : R� ! E, where E = �
A2A

RjAj. To each vector x 2 R� we
associate the score of alternative a from subset A 2 A

s(a;A; x) = (A)
TP aAx (11)

where A is the jAj � 1 voting vector for a subset of size jAj and P aA is a
jAj � j�j matrix. The i� element of this matrix is P aAi� = �ir(a;A;�) where
r(a;A; �) is the ranking of alternative a in A for motivation �. The vector of
scores s(A; x) for subset A is an element of RjAj and the stack of all of these
vectors is S(x), an element of E. Observe that the dimension of E is M =Pn

k=2

�
n
k

�
k as there are

�
n
k

�
subsets of k � 2 alternatives (M = 2n�1n�Q).

The domain R� is a linear space that can be decomposed into two sub-
spaces �� = fx 2 R� j eT�x = 0g and the space orthogonal to it, ��

?, which
is spanned by the vector e�. Clearly, dim(��) = ��1 and dim(�?) = 1 and
each x 2 R� can be written as x = x� + x?, with x� 2 �� and x? 2 �?.
Similarly, let � = fs 2 RAj eTAs = 0g and � = �

A2A
�A. Note that � is a set

of scores that sum to zero for each subset and, as argued earlier, S(��) � �.
The codomain E can be decomposed into � and the space �? orthogonal to
it. Since � is de�ned by one constraint for each of the Q subsets in A, we
have that dim(�) =M �Q and dim(�?) = Q.
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To establish the Lemma it su¢ ces to show that for any vector of scores
s 2 � there is a deviation vector � 2 �� such that s = S(�), that is, S(��)
= �. We proceed in two steps.
Step 1: If dim(ker(S)) = Q� 1 then S(��) = �.
Since S(��) � �, we have that S(��) = � if dim(S(��)) = dim(�).

Now, dim(�) = M � Q so the previous holds if and only if dim(S(��)) =
M �Q. We show that the latter holds if and only if if dim(ker(S)) = Q� 1.
By the dimension decomposition theorem we know that

dim(S(R�)) + dim(ker(S)) = dim(E) =M:

We also know that dim(S(�?)) = 1 as dim(�?) = 1 and, by construction,

dim(S(R�)) = dim(S(�?)) + dim(S(��)):

Combining the previous we have

dim(S(��)) =M � 1� dim(ker(S));

and the conclusion follows.
Step 2: dim(ker(S)) = Q� 1
Let L be the matrix associated to S. We establish Step 2 by showing

that for any � 2 E satisfying LT� = 0 then �aA = A for each a 2 A, andP
A2A A = 0. That is, the nullspace of LT is de�ned by one parameter

per subset and these parameters must sum to zero, which means that it has
dimension Q�1. We use induction k = f2; :::; ng over the size of each subset.
We introduce some notation. Let Ak = fA 2 Aj jAj � kg be the family

containing all subsets of k or more alternatives, k = f2; :::; ng. Clearly,
A2 = A and Ak is decreasing. For each each � 2 �� de�ne

hk(�) =
X

a2A;A2Ak

s(a;A; �)�aA:

It is straightforward to check that if � satis�es LT� = 0 we have thatX
a2A;A2A

s(a;A; �)�aA = 0 for all � 2 �;

which by the linearity of the scores with respect to � is equivalent to

h2(�) =
X

a2A;A2A
s(a;A; �)�aA = 0 for all � 2 ��: (12)
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We are now in position of showing our initial induction step. Let B =
fb1; b2g be an arbitrary subset of size k = 2. From Lemma 3, there exist �
and b� such that s(a;A; �) = s(a;A; b�) for all a 2 A, A 2 A2nfBg. Further,
s(b1; B; �) = s(b2; B; b�) = 1 and s(b2; B; �) = s(b1; B; b�) = 0. Combining
this with (12) we get

h2(�)� h2(b�) = �b1B � �b2B = 0
or �b1B = �b2B = B, which completes the initial step.
Our induction hypothesis is that �aA = A for each a 2 A and jAj =

k � 1. We need to show that the previous is also satis�ed for subsets of k
alternatives. Indeed,

h2(�) =
X

a2A;A2A2nAk

s(a;A; �)�aA + hk(�)

and, using the induction hypothesis, we have thatX
a2A;A2A2nAk

s(a;A; �)�aA =
X

A2A2nAk

A
X
a2A

s(a;A; �) =
X

A2A2nAk

AWA;

where WA =

jAjX
j=1

jjAj which is independent of �. Hence, using (12) we con-

clude that
hk(�) = ck for all � 2 ��; (13)

where ck is a constant independent of � 2 ��. Invoking Lemma 3 again, there
exist �0; �00 2 �� �0 and �00 such that s(a;A; �0) = s(a;A; �00) for all a 2 A,
A 2 AknfBg. Further, s(b1; B; �0) = s(b2; B; �

00) = 1 and s(b2; B; �
0) =

s(b1; B; �
0) = 0. Using this and (13) we conclude that, for any B, and

fb1; b2g � B, with jBj = k, we have that

hk(�
0)� hk(�00) = �b1B � �b2B = 0:

This shows that �b1B = �b2B. Since b1 and b2 are arbitrary elements of B
and this is an arbitrary subset of size k, we conclude that �bB = B for any
such set. The induction is complete. �

Lemma 3 For almost any voting rule v, any subset of alternatives B 2 A,
and any pair fb1; b2g � B, there exist a pair of pro�les � and b� such that
s(a;A; �) 6= s(a;A; b�) for a 2 A, and A 2 A with jAj � jBj if and only if
A = B and a 2 fb1; b2g:
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Proof. We provide a complete argument for v 2 fvP ; vAg, where vP is
Plurality and vA is Antiplurality. Fix B 2 A and a pair fb1; b2g � B.
We construct preferences � and b� that give rise to identical scores for all
alternatives in subsets other than B having jBj or more alternatives. We
also show that s(a;B; �) = s(a;B; b�) unless a 2 fb1; b2g. We later explain
how to extend the argument for a general v.
Consider � to be a preference such that b1�b2 and there are there are no

elements of X ranked between alternatives b1 and b2. Let b� be identical to �
except for the fact that b2�b1, i.e., b1 and b2 have been permuted. Observe
that � and b� induce the same order over any subset of alternatives that does
not contain the pair fb1; b2g. In particular, for any A such that fb1; b2g * A,
we have that s(a;A; �) = s(a;A; b�) for each a 2 A. Throughout the proof
we consider � and b� as above.
Suppose that v = vP . Let M(A; e�) denote the maximal element in A for

preference e� 2 � and observe that, for Plurality, this is the only alternative
that receives a score of one (all others get a zero score). Consider � andb� satisfying two additional properties: (i) a�b and ab�b for any a 2 XnB,
b 2 B; and (ii) In B, b1 is ranked �rst by � and b2 is ranked �rst by b�. Now,
since any subset A 6= B having jAj � jBj contains elements in XnB, we
have that M(A; �) = M(A; b�) 2 XnB as elements in B are ranked at the
bottom for both � and b� (by (i)) and these preferences are identical except
for the permutation of b1 and b2. We conclude that s(a;A; �) = s(a;A; b�)
for each a 2 A, A 6= B, and jAj � jBj. Finally (ii) implies that s(b1; B; �) =
s(b2; B; b�) = 1 and s(b1; B; b�) = s(b2; B; �) = 0.
Suppose instead that v = vA. Let m(A; e�) denote the worse element

in A for preference e� 2 � and observe that, for Antiplurality, this is the
only alternative that receives a score of zero (all others get a score of one).
Consider � and b� satisfying two properties: (i) b�a and bb�a for any a 2 XnB,
b 2 B; and (ii) In B, b2 is ranked last by � and b1 is ranked last by b�. Any
subset A 6= B having jAj � jBj contains elements in XnB. Thus, from (i),
m(A; �) = m(A; b�) 2 XnB. It follows that s(a;A; �) = s(a;A; b�) for each
a 2 A, A 6= B, and jAj � jBj. It is straightforward to check that (ii) implies
that s(b1; B; �) = s(b2; B; b�) = 1 and s(b1; B; b�) = s(b2; B; �) = 0.
To extend the argument for a general rule v, let �12 = f�jb1�b2g and

�21 = f�jb2�b1g. De�ne f : �12 ! �21 to be the map that assigns to each
� 2 �12 the preference b� = f(�) 2 �21 that ranks all elements the same
as � except for the fact that b1 and b2 have been permuted in the order.
As in the cases above, � and b� induce the same order over any subset of
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alternatives that does not contain the pair fb1; b2g. The populations � andb� in the statement of the lemma are such that �(�) = b�(f(�)), from which
s(a;A; �) = s(a;A; b�) for each a 2 A, as long as fb1; b2g * A. The speci�c
weights �(�) are constructed to ensure that s(b1; B; �) = s(b2; B; b�) and
s(b1; B; b�) = s(b2; B; �): The details are omitted.
Proof of Proposition 2

We start by showing by induction that, for a generalized Borda rule,
scores satisfy

s(a;A; �) = �jAj
X

a02Anfag

s(a; fa; a0g; �); (14)

that is, the score of an alternative a 2 A is proportional to the sum of
scores obtained by in pairwise contests with the other alternatives in A. We
proceed by induction over the size of A. For jAj = 3 this is immediate: The
Borda score a is the simple average of the score of a against the other two
alternatives in A, so �3 = 1

2
. Our induction hypothesis is that (14) holds for

any set B such that jBj = k. Let A be a set of size k+1. From the main text,
we have that s(a;A; �) = 1

k�1
P

B2K(a;A) s(a;B; �) and using the induction
hypothesis s(a;B; �) = �k

P
a02Bnfag s(a; fa; a0g; �). Combining these we get

s(a;A; �) =
�k
k � 1

X
B2K(a;A)

X
a02Bnfag

s(a; fa; a0g; �) =
�
k � 2
k � 1

�
�k

X
a02Anfag

s(a; fa; a0g; �)

where we used the fact that each alternative a0 6= a appears in k � 2 of
the k � 1 sets in K(a;A): We conclude that (14) is satis�ed for A setting
�k+1 =

�
k�2
k�1
�
�k. This completes the induction.

Note that the linearity of the scores s(a;A; �) in � implies that (14) holds
changing � for any population �. Note also that s(a; fa; a0g; �) is simply the
strength of motivations that prefer a to a0 for population �.
Towards a contradiction, suppose that there exists an explanation of c

based on a generalized Borda count satisfying (i) and (ii) of the Proposition�s
hypothesis. This means that s(a;A; �) < s(xl; A; �) for all a 6= xl and all
explanatory population �. Now, if c satis�es (i) and (ii) in the Proposition�s
hypothesis, it must be that for any � 2 E(c) we s(xw; fxw; a0g; �) � 1=2 for
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all a0 2 Anfxwg and s(xl; fxl; a0g; �) � 1=2 for all a0 2 Anfxlg. It follows
from (14) that

s(xw; A; �) �
jAj � 1
2

�jAj � s(xl; A; �)

and we have the desired contradiction. �

B.2 Ordinal Welfare Inferences

Proof of Theorem 3
Suppose that c is pairwise coherent w.r.t. (x; y). We establish the result

by constructing a family of explanations based on Plurality with populations
that have support Sxy = f� 2 �jx�y and @a such that x�a�yg, i.e., the
subset of �xy consisting of rankings that have no alternatives ranked between
x and y.
We start by introducing some notation. Let x =2 X be an auxiliary

alternative that replaces x and/or y in each subset that originally contained
one or both of these. To be precise, let X = Xnfxg and consider map
g : X ! X

g(a) =

�
a if a =2 fx; yg
x if a 2 fx; yg:

For eachA 2 A, g(A) denotes the image ofA under g. Observe that g(A) = A
if A does not contain either x or y and, otherwise, g(A) = Anfx; yg [ fxg.
Let A be denote the collection of subsets of X of two or more elements, �
be the set of orderings over X, and �� be the simplex of populations on �.
Next, we introduce an auxiliary choice function c� de�ned on the "re-

duced" domain A rather than A. For each set T that does not contain either
x or y, let

Q(T; c) = fc(T [ fxg); c(T [ fyg); c(T [ fx; yg)g and
Qg(T; c) = g(Q(T; c)):

Hence, Q(T; c) is the set of choices under c for subsets that add x; y; or both
to T and Qg(T; c) is the image of this set under g. Observe that that the
image of T [K for each nonempty K � fx; yg under g is always T [ fxg.
Consider the choice function c� : A ! A de�ned by

c�(A) =

�
c(A) if x =2 A
Qg(Anfxg; c) if x 2 A: (15)
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The choice function c� reproduces c for choice instances that do not contain
x and imposes a tie for alternatives in Qg(Anfxg; c) if x 2 A. Note that
Qg(Anfxg; c) is a singleton if c is independent w.r.t. fx; yg.
For any �� 2 �� that explains c�, we construct and an explanation of

c with the desired property. For this purpose, we introduce the one-to-one
map h : � ! Sxy that assigns to each preference pro�le � 2 � the ranking
� = h(�) 2 Sxy satisfying a � x) a�x and x � a) y�a. That is, the order
h(�) is such that alternatives x and y are inserted as a stack in place of x
respecting order �. Let H : �� ! �� be the map de�ned by � = H(�) if
�(h(�)) = �(�). By construction, H(�) 2 �xy for any �. We claim that if
�� explains c� then H(��) explains c. The claim is shown in two steps:
Step 1: If � = H(�), a = g(a), and A = g(A) then

s(a;A; �) =

� bs(a;A; �) if fx; yg  A or a 6= y
0 if a = y, fx; yg � A; (16)

where s(a;A; �) is the Plurality score of a from alternatives in A � X and
� 2 ��, and bs(a;A; �) is the Plurality score of a from alternatives in A � X
and � 2 ��.
Indeed, we can express A as A = T [K, where T \ fx; yg = ; and either

K = ; or K is a non-empty subset of fx; yg. If K = ;, so that A = A,
the ranking of alternatives in A under h(�) is the same as the ranking of
alternatives in A under � (for any �). Instead, if K = fzg with z 2 fx; yg,
the ranking of alternatives in A under h(�) is the same than the ranking of
alternatives in A = T [ fxg under � replacing z for x (for any �). Thus,
s(a;A; �) = bs(a;A; �) if fx; yg  A.
Finally, consider the case K = fx; yg, so that A = AnK [ fxg. Since x

is ranked better than y by h(�) for any � 2 �, y is not ranked �rst in A by
any motivation in the support of �. Thus, for Plurality, s(y; A; �) = 0. On
the other hand, if a is ranked �rst in A by h(�) then a = g(a) is ranked �rst
in A by �. Hence, s(a;A; �) = bs(a;A; �) for a 6= y.
Step 2: If A does not contain either x or y, g de�ned on A is the identity
and, from (16), there is also a one-to-one correspondence between the scores
of H(��) for alternatives in A and the scores of �� alternatives in g(A).
Further c(A) = c�(A). Since �� explains c�, bs(c�(A); A; ��) > bs(a;A; ��)
for each a 6= c�(A), from which s(c(A); A;H(��)) > s(a;A;H(��)) for each
a 6= c(A). Consider the case either x or y are in A, so that A = g(A) contains
x. If A contains only one of these alternatives then, from (15) and (16), it is
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straightforward to verify that the scores of alternatives in A\Q(Anfxg; c) are
equal to each other and greater than the score of any other alternative in A.
Since c(A) 2 Q(Anfxg; c), we have that s(c(A); A;H(��)) � s(a;A;H(��))
for each a 6= c(A). Finally, if fx; yg � A, the previous holds replacing
Q(Anfxg; c) with Q(Anfxg; c)nfyg. We conclude that H(��) 2 E(c). �

Proof of Proposition 3
Suppose that c is not pairwise-coherent w.r.t. (x; y) and, without loss

of generality, assume that x = c(fx; yg). This means that if there exists
� 2 E(c) that puts weight only on motivations that unanimously rank these
alternatives, it must be that they rank x over y (x = c(fx; yg) implies a
weight of at least 1=2 on such motivations).
Since c is not pairwise coherent w.r.t. (x; y), there exists a choice instance

B such that fx; yg � B and y = c(B). Let v be a scoring rule such that
� 2 E(c; v). Let �s(x; y; B; �) = s(x;B; �) � s(y;B; �), the di¤erence in
scores between x and y for motivation � under voting rule v. Comparing the
scores of x and y in B we have thatX

�2�
�s(x; y; B; �)�(�) � 0: (17)

Let �xy = f� 2 �jx�yg and �yx = f� 2 �jy�xg. By assumption, we have
that �xy =

P
�2�xy �(�) = 1 and �yx =

P
�2�yx �(�) = 1� �xy = 0. We can

rewrite (17) as X
�2�xy

�s(x; y; B; �)�(�) � 0:

Since �s(x; y; B; �) � 0 for any � 2 �xy, the previous can only be satis�ed
if it is satis�ed with equality and

�s(x; y; B; �) = 0 for each � 2 �xy such that �(�) > 0:

Given �xy = 1, there is always some e� 2 �xy having �(e�) > 0. Let � =
r(x;B; e�) 2 f1; :::jBj � 1g and �0 = r(y;B; e�) 2 f2; :::jBjg be respectively
the rank of x and y from alternatives in B for motivation e�. Since, e� 2 �xy,
we have that �0 > � and the scoring vector jBj for subsets of jBj alternatives
must satisfy is �jBj = 

�+1
jBj = ::: = 

�0

jBj. �

Proof of Proposition 4
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Let Xn = X and Xj = Xnfxj+1(c); :::; xn(c)g for each j 2 f2; :::; n �
1g. Observe that c(Xj) = xj(c). Suppose that � 2 E(c) is an explanation
such that �W (F; c; �) � 0 for any expansion F . This condition for each
expansion Fj = (Xj; Xj+1) implies that fW (xj+1(c); �) � fW (xj(c); �) for all
j. This means that the partial order �c is the same as the order induced byfW (�; �). It follows that if �W (F; c; �) = fW (c(B); �) �fW (c(A); �) � 0 for
any expansion F = (A;B) then c(B) �c c(A), which means that c expansion-
monotonic with respect to �c.�

B.3 Utilitarian Bounds

Proof of Proposition 5
Let v = (2; :::; n) be a voting system and recall that the score of an

alternative a for a subset A for a population � can be written as s(a;A; �) =
tjAjPaA�, where PaA is the jAj � � matrix described in the proof of Lemma
1. Scores are bilinear in jAj and �. For a �xed choice function c, let Q

c
aA =

Pc(A)A � PaA and observe that the polytope of explanations of c based on v
is de�ned by mixed system of linear equalities and inequalities

tjAjQ
c
aA� � 0 for all a 2 Anfc(A)g; A 2 A (18)

et� = 1 (simplex constraint).

Note also that for each k 2 f2; :::; ng the voting vector k is constrained by
the vector inequalities

k � e1k and k � ek�1k ; (19)

which de�nes the (k � 2)-dimensional cube V k = fx 2 Rkjx1 = 1; xk =
0; 0 � xi � 1g. The extreme points of this cube are precisely the basic
k�alternative voting vectors: e1k; e2k; :::; and ek�11 .
Let Z(c; r) = min�frt�j� 2 E(c)g and Z(c; r; v) = min�frt�j� 2 E(c; v)g.

Clearly, since E(c) = [v2VE(c; v), we have that Z(c; r) = minv2V Z(c; r; v).
Thus,

Z(c; r) = min
(�;v)

frt�j (�; v) satisfy (18) and (19)g
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and the corresponding Lagrange function is

L(�; v; q; p) = rT�+
X

a2Anfc(A)g
A2A

qaA
�
tjAjQ

c
aA�

�
+ p

�
eT�� 1

�

+

nX
k=2

�t+k(k � e1k) +
nX
k=2

�t�k(�k + ek�1k )

where the qaA�s and p are the Lagrange multipliers associated to (18), and
�+k and ��k are vectors of Lagrange multipliers associated to (19). For each
k, basic voting vectors are the extreme points of V k. Hence, the linearity of
L with respect to each k implies that there exists a basic voting rule that
attains Z(c; r). �

Proof of Theorem 4. The result is a immediate Corollary of the following
Lemma:

Lemma 4 Fix a choice rule c and a choice-varying expansion F . Then

�Wmin(F; u; c) � �(F; c)g(u; F; c)� (1� �(F; c))L(u; F; c)

and

�Wmax(F; u; c) � �(F; c)G(u; FA; c)� (1� �(F; c))l(u; F; c):

Proof. Observe that

�W (F; u; c; �) = �W+(F; u; c; �) + �W�(F; u; c; �) (20)

where
�W+(F; u; c; �) =

X
�2�+

�u(F; c; �)�(�);

is the change in welfare for motivations that bene�t from the expansion and

�W�(F; u; c; �) =
X
�2��

�u(F; c; �)�(�):

is the change in welfare for motivations hurt by it.
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Clearly,

�+(F; c; �)g(u; F; c) � �W+(F; u; c; �) � �+(F; c; �)G(u; F; c)

and

�(1��+(F; c; �))L(u; F; c) � �W�(F; u; c; �) � �(1��+(A; c; �))l(u; F; c):

Adding up these inequalities and using (20) yields

�+(F; c; �)g(u; F; c)� (1� �+(F; c; �))L(u; F; c) � �W (F; u; c; �)

and

�W (F; u; c; �) � �+(F; c; �)G(u; F; c)� (1� �+(A; c; �))l(u; F; c)

The result follows from the above two inequalities.

Proof of Lemma 2
We use the notation introduced in Section 3.1. Suppose that c is seemingly

rational. In this case the only choice-varying expansion is F from A =
fxs; xtg to X, which changes the choice from xs = c(A) to xr = c(X).
Note that xr = c(fxr; xsg). From the choice inequality corresponding to this
choice situation it follows that �+(F; c; �) � 1=2. This lower bound can be
attained by some b� 2 E(c). Indeed, if � = xrxsxt and �0 = xsxrxt then the
population b� satisfying b�(�) = b�(�0) = 1=2 with any voting rule v explains
c, and �+(A; c; b�) = 1=2. Hence, �(F1; c) = 1=2 and �(F1; c) = 1. Since
this expansion is pairwise coherent, Theorem 3 implies that �(F; c) = 1 and
�(F; c) = +1.
Suppose that c displays second-place choice. There are two choice-varying

expansions: F1 = (fxr; xsg; X) and F2 = (fxr; xtg; X). Both change the
choice from xr to xs. Applying Corollary 1 we �nd that for any of these
expansions �(F; c) = 0 is attained for the Antiplurality polytope of expla-
nations by the population � 2 E(c; vA) that puts all mass on the moti-
vation � = xrxsxt. This population explains c using Antiplurality. Thus,
�(F; c) = 0. It is straightforward to check that the same b� identi�ed above
(which explains c for any v) attains �(F; c) = 1=2, so �(F; c) = 1.
Suppose that c displays third-place choice. There are three choice-varying

expansions. Expansions F1 and F2 from A1 = fxr; xsg respectively A2 =
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fxr; xtg to X, change the choice from xr to xt. The third expansion F3
is from A3 = fxs; xtg to X, and the choice changes from xs to xt. Since
c(fxr; xtg) = xr and c(fxs; xtg) = xs, the strength of motivations that bene�t
from any expansion F is bounded above by 1=2 for any explanation of c.
Using Corollary 1 we �nd that �(F; c) = 1=2 is attained by the population
�(�) = �(�0) = 1=2 with � = xrxtxs and �0 = xsxtxr, which explains c
with vA (any v � 1=2). Hence, �(F; c) = 1 for any choice-varying expansion.
The same result is used to �nd the lower bound �(F; c) = 1=4 for each F ,
from which �(F2; c) = 1=3. Indeed, letting � = xrxsxt; �0 = xrxtxs and
�00 = xsxtxr, the population �(�) = �(�00) = 1=4 and �(�0) = 1=2 explains
c with vA, and attains the bound for F1 and F2. Similarly, the population
�(�) = �(�0) = 1=4 and �(�00) = 1=2 also explains c with v = vA, and attains
the bound for F3.
Finally, suppose that c displays cyclic choice. Assume that c(fx; yg) =

x; c(fy; zg) = y; c(fx; zg) = z and c(X) = x (all other cyclic choice patterns
are analogue). There are two choice-varying expansions. An expansion F1
from A1 = fy; zg to X changes the choice from y to x. This expansion is
pairwise coherent so, by Theorem 3, we know there exists some � 2 E(c)
such that �+(F1; c; �) = 1. Hence c(F1; c) = 1 and �(F; c) = +1. Since
c(fx; yg) = x, the strength of motivations that prefer x to y is at least 1=2
for any � 2 E(c). If � = yxz and �0 = zxy , the population � such that
�(�) = �(�0) = 1=2 with Antiplurality explains c and �+(F1; c; �) = 1=2, so
the bound is attained. Hence, �(F1; c) = 1=2 and �(F1; c) = 1. The second
choice-varying expansion is F2 from A2 = fx; zg to X, which changes the
choice from z to x. Since c(fx; zg) = z, the we have that �+(F2; c; �) � 1=2
for any � 2 E(c). Using Corollary 1 we �nd that �(F2; c) = 1=2 which is
attained by the population � such that �(�) = �(�0) = 1=2 with � = yxz
and �0 = zxy. This � explains c with Antiplurality. Once again, the same
result we �nd that �(F2; c) = 1=4 which is achieved by a vertex of E(c; vA).�
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